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I. TNTRODUCTION

Letfbe a real function, defined and #0 on [-1, 1] and let N be an integer
~O. Consider the problem of relative approximation offby real polynomails
rex) of degree ~N, i.e., approximating 1 by r(x)/f(x), uniformly on [-1, 1].
This is the same as the problem of approximatingfby r in the norm

sup I I/f(x)] . I f(x) - rex)! .
-1~"'<1

Iff is continuous on [-1, 1], this is just a special case of the familiar problem
of uniform approximation, with a (positive, continuous) weight function,
of a continuous function, by polynomials of degree ~N, namely, the case
where the weight function is the reciprocal of the approximated function.

To get away from that familiar problem we relax our assumptions. Thus,
we shall assume throughout that f is defined, real, #0, and continuous in
[-1, I] ""' {O}; k and n are given nonnegative integers, and that xk/f(x) is
bounded in [-I, I] ""' {O}.

Our aim is approximating I, in the uniform norm, by a ratio xkp(x)/f(x),
p E lln , so that the measure of our approximation is

sup I I - xkp(x)/f(x) I ,
"'E[-I,l]~{O}

where lln denotes the set of all real polynmials of degree ~n.
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First observe that there is always a p* E IIn which minimizes (1) among
allpEIIn . In fact, ifj(x)/xk is bounded in [-1,1] ,,-,{O}, then for every
p EIIn ,

I Xkp(X) I I xl. I \j(x) Isup 1 - -- = sup -'_. -- -- p(x)
XE[-l.l]~{O} j(x) XE[-I,l]~{O} j(x) xl.

and the right-hand side has a minimum when p varies over IIn as both the
approximated function j(x)/xk and the weight xk/j(x) are bounded. If, on
the other hand, j(x)/xk is unbounded, then we must have

I
Xkp(X) Isup 1 - ---- :> 1

XE[-l.I]~{O} j(x) y-

for each p E IIn . This in turn implies that p(x) == 0 minimizes (1) over IIn .

In Section 2, we investigate the questions of uniqueness and characteri
zation of p E IIn minimizing (1), while in Section 3 we study the size of the
numbers in (1).

We denote by Ii II the supremum norm over [-1, 1] "-' to}, and set

. II xkp(x) [I
Pn = ~lP., I - !(x) I' (2)

2. UNIQUENESS AND CHARACTERIZATION OF BEST RELATIVE ApPROXIMANTS

We begin with a lemma showing the quantitative effect on Pn of a "singu
larity" (at 0) of xk/j(x). In what follows, set

I.

fJ- = lim inf j
x
( )

x-,O x and M = lim sup jX(k) .
x->O X

Both fJ- and M are finite due to the assumption that xk/j(x) is bounded
throughout [-1, 1] "-' to}.

LEMMA 1.

1. Pn > 1 cannot occur.

II. Pn = 1 if and only if fJ- ~ 0 ~ M.

III. Pn < 1 if and only if fJ- > 0 or M < o.
If fJ- > 0 or M < 0 then

(3)
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Proof (I) The choice p(x) ~ 0 shows that Pn > 1 is impossible. (II)
Suppose that J1-:(; 0 :(; M. Let p Elln be such that p(O) ~ O. Then
there exists a sequence {xJ C [- I, I] '" {O} such that Xv -+ 0 and
(x/,(xv)/f(x')) -+ J1-p(O). Thus,

!ll - xkp(x) II ~ lim II _x1'p(xJ I
I. f(x) v~w f(xJ

= 1 - J1-p(O) ~ 1.

Similarly, if p(O) < 0, then using M rather than J1-, we can conclude that

I
I, - xkp(x) II >- I
I f(x);/"

Combining this with (I) gives the desired result. Conversely, suppose Pn = 1.
By way of a contradiction, assume that J1- > O. Then

x k

'l) = inf -- >0O<lxl <;;1 f(x) ,

which implies

x k 'l)
0:(; 1- B 'f(x) :(; 1- B < I,

where B = SUpo<lxl<l xk/f(x). Hence,

Similarly, the assumption M < 0 leads to a contradiction. Note that (III)
follows from (I) and (II).

Finally, we turn to proving (3). Suppose that M < O. Let p E lln satisfy
p(O) ~ 2/(M + J1-) and select a sequence {xv} C [-1,1] '" {O} such that
Xv -+ 0 and x/ff(x') -+ M. Then,

II
I - xkp(x) II ~ lim I I _ xvkp(xv) I

f(x)! v~w f(xJ

= I I - M . p(O)1 ~ 1 - M . p(O)

2 J1--M IM-J1-!
~l-M'M+J1-=M+J1-= M+J1-'

On the other hand, let q E JIn satisfy q(O) < 2/(M + J1-). Select a sequence
{xv} C [-1, 1] "'-' {OJ such that Xv -+ 0 and x/'ff(x,,) -+ J1-.
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1[
1- xkq(X) II :? lim 11 _ xj'(xv) I

, f(x) v->oo f(xJ

= I 1 - fLq(O) I :? fLq(O) ~ 1

2 fL-M IM~fLl
>fL' M+fL -1 = M+fL = M+fL .

This establishes (3). A similar argument applies if fL > O.
Next, we wish to give a sufficient condition for equality in (3). In what

follows we denote, for a given p E lIn ,

LEMMA 2. Suppose that fL > 0 or M < 0, and that, for a given p ElIn ,
lim SUP'H E(x) = II E II and lim inf E(x) = -II E II. Then p is a bestx->o
relative approximant to f(i.e., p minimizes (1) over lIn) and

1

M -fL IPn = II Ell = M + fL .

Proof Note that lim supx~o E(x) = max{I - fLP(O), I - Mp(O)} and
lim infx~o E(x) = min{I - fLP(O), 1 - Mp(O)}. Thus, always 1 - fLP(O) =

-{I - Mp(O)}, implying that

p(O) = 2((M + fL) and II Ell = I(M - fL)((M + fL)l.

We now characterize best relative approximations via a modified alter
nation theorem when Pn < 1, i.e., in case (III) of Lemma 1. We say that
Xl E [-1, 1] ,...., {O} is an extreme point of the relative approximation off by
p provided I E(x l ) I = II E II. We say that 0 is an extreme point, provided that
exactly one of the equalities

lim sup E(x) = II Ell,
x-)o

lim inf E(x) = - II Ell
x-~O

holds. Denote the set of these extreme points by Xp • Iflim supx~oE(x) = II Ell
and lim infx~o E(x) = -II E II, we shall say that 0 is a determining point.
Define u(x) on Xp by

u(x) = sgn E(x), if X =1= 0,

u(O) = +1, if lim sup E(x) = II Ell,
x->O

u(O) = -1, if lim inf E(x) = -II Ell.
x->O

Note that if 0 is a determining point, then 0 $ Xp , so that u(O) is undefined.



360 BACOPOULOS, SHISHA, AND TAYLOR

THEOREM 1. (Characterization in case fLM > 0). Suppose °< Pn < I.
Then p E IIn is a best relative approximant to f if and only if either

(a) °is a determining point (in which case II Ell = I(M - fL)/( M + fL)l,
or,

(b) there exist n + 2 extreme points -1 :'(: Xl < X2 < .,. < x n +2 :'(: 1
such that a(xi+l) = -a(xi)' i = 1,... , n + 1.

Proof Assume that (a) does not occur and that p is a best relative
approximant. To show (b), suppose that -1 :'(: Xl < X2 < ... < xm :'(: 1,
with 1 :'(: m :'(: n + 1, is a maximal set for which a(xi+l) = -a(xi)' if
1 :'(: i :'(: m - I (observe that there is always at least one extreme point).
Since Pn > 0, neither E(x) == II E II nor E(x) == -II E II can occur. Indeed,
if the former occurred, then II Ell # 1 (otherwise, p(x) == 0, Pn = I), and
xkp(x)/((l - II Eli) f(x)) == 1, implying that Pn = 0. If E(x) == E !I,
then xkp(x)/(l + II Ell) f(x) == 1, again implying Pn = 0. Set t" = -1
and tm = 1. If m > I, select {ti}~lI, satisfying to < tl < ... < t"'_1 <
tm , ti # 0, Xi < ti < Xi+l' ti rt Xp , for i = 1,... , m ~ I, such that a(x)
is constant on [ti , ti+l] () Xp for i = 0, 1,... , m - 1. Without loss ofgenerality,
assume that Xl :'(: °(if not, replace f(x) by f( - x) and p(x) by p(- x». By
our assumption that Pn > 0, we must have a(xi) # °for i = 1,... , m. Let
us assume for convenience that a(xI ) = +1; a similar argument will treat the
case a(xI) = -1 but will not be given here. Define

where II(x) = (x - tI) ... (x - tm - I) if m > 1 and II(x) = 1 if m = 1,
and where ,.\ # °is a real number satisfying sgn ,.\ = (-1 )k+m-I sgn f( -1).
We shall show that there exists such a ,.\ for which p,(x) is a better relative
approximant to f than p, giving a contradiction. Consider the function

E ( ) = 1 _ xkp,(x) = E( 0) _ ,.\xkII(x)
, x f(x) )( f(x) , X E [-1, II "-' {O}.

Note that our assumption fLM > °and continuity considerations imply
that sgn yk/f(y) = sgn xk/f(x) for all x, y E [-1, 1J"-' {O}. Let s be the index
for which t s < °< t,HI and set

W = {x E [-1, t sl U [tH1 , 1]: IE(x) I :'(: II EII/2}.

Since xk/f(x) is bounded, there exists a 81 > °satisfying

I Elx) , = : I - (x"/f(x»(p(x) + AII(x» I
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for all x E W, provided I It. I is sufficiently small. Also, on each interval
[1 i , 1H1], i =F s, we may use the fact that no alternation occurs to reduce the
error in the usual manner. Indeed, consider such an interval [1i , 1i+1], where
we assume for convenience that i is even (so that a(xH1) = +1). Thus,
E(x) > -II E II for all x E [1 i ,1i+1]. Now, let x E [1 i ,1i+1] be such that
E(x) ~ II E 11/2. As observed earlier, sgn(xklf(x)) is constant on [-1, 1] "-' {O};
also, sgn ll(x) = (_l)m-l since i is even, so that

(
It.xkll(x))

sgn f(x) = 1.

Hence,

It.x·fl(x)
EIt(x) = E(x) - f(x) < E(x).

Thus, by compactness, there exists 8i > 0 such that

-II Ell + 8i ~ EIt(x) ~ 11 Ell - 8i

for all x E [1 i ,1i+1] and for all It. , with I It. I sufficiently small. A similar
argument can be given for the case when i is odd.

Finally, consider the interval [ts, 1s+1]' Since we assume that (a) does not
hold, both lim sup",~o E(x) = II Ell and lim inf",~o E(x) = -II E II cannot occur
simultaneously. For convenience, let us assume that lim inf",~o E(x) > -II Ell.
Now if lim supx~o E(x) < 11 E II also occurs, then for 1 It. I sufficiently small,

so that we can select It. as above giving a better approximation on [ts, 18+1]'
On the other hand, suppose lim suP",~o E(x) = II E II. In this case a(xS+1) = + 1
and we may take X S +1 = O. Also, )..xkll(x)lf(x) > 0 for x E (ts , 1S+1) "-' 0,
as reasoned earlier. Now, since there are no negative extreme points in
[ts, 1S+1], there exists a 84 > 0 such that E(x) > -II Ell + 84 for all
x E [ts, 1S+1] "-' {O}. Hence, there exists a 85 > 0 such that I Eix) I =

IE(x) - It.xkll(x)!f(x) I < II Ell - 85 on [ts, 18+1] "-' {O}, for I It. I sufficiently
small. A similar argument can be given for the case that lim sUP",~o E(x) <
II E II and lim inf",~o E(x) = E II. Collecting these results, we have that
for I It. I sufficiently small, II Elt II < II E II, a contradiction.

Conversely, if 0 is a determining point, then by Lemma 2, p is a best
relative approximant to f Finally, assuming (a) does not hold but (b) does,
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we shall show that p is a best relative approximant to f Indeed, suppose there
exists a q E fln such that

.

,1 xkq(X) I" xkp(x) .1

,,\1 - f(x) I ~ Ii I ~ f(x) 1\·

Suppose Xi =Ie 0 is a positive extreme point; then (4) implies that

Likewise, if Xi =1= 0 is a negative extreme point, then (4) implies that

(4)

On the other hand, suppose that 0 is a positive extreme point and
let {xv} C [- I, I] ,...., {O} be a sequence of points for which Xv --~ 0 and
(l - x""p(xv)/f(xv)) -->- !I E II. Then, since both of the sequences {xv"lf(xvn
and {I - x}q(xv)lf(xvn are bounded, we may extract a subsequence {x,J
of {xJ for which x/lf(x,,) -->- (3 and I - x}q(x,,)lf(x,,) -->- cx, where
fJ- ~ (3 ,:;; M and II Ell ;? cx. Hence,

o~ E! - ,:I: = lim (. Xj't~,,) - X"kp(XJ.) = (3(q(O) - p(O».
" ..00 x" f(x")

Similarly, if 0 is a negative extreme point, we have

o ~ f3(p(O) - q(O»,

where (3 is defined as above. However, our assumption p,M > 0, implies
that sgn (3 = sgn(xNf(xi»' for all Xi =Ie 0, as reasoned earlier. From this it
follows that

y( -l)i(p(xi) - q(x,» ;? 0, 0, i = I, ... , n + 2,

where y = ±l and {Xi};::r1
2 is a set of extreme points on which (b) holds.

Thus, by counting multiple zeros of p - q twice, we see that p - q must
have at least n + 1 zeros [2, p. 61]. Hence, p(x) == q(x).

THEOREM 2. (Characterization, classification and uniquenes!f for general
fJ-, M). Let B(.f) be the set of best relative approximants to f from fln •
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(I) If fL ~ °~ M, then uniqueness fails.

B(f) = {p E JIn : p(x) == 0, or sgn p(x) = sgn(xk/f(x)) and

Ip(x) I ~ I 2f(x)/xk I throughout [-1, 1] "-' {On; and

Pn = 1.
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(II) If fL > 0 or M < 0, and 0 is a determining point of some best
relative approximant to f, then unicity fails.

. 2 2fLf(x) 2Mf(x)
B(f) = /p EJIn · p(O) = NT+ fL and xk(M -+- fL) ~p(x) ~ xk(M -+- fL)

throughout [-1, 1] "-'{O}! ; and pn = I(M - fL)/(M + fL)l.

(III) If fL > 0 or M < 0 and 0 is a determining point of no best relative
approximant to f, then there is a unique best relative approximant and it is
characterized by (b) of Theorem 1.

Proof We omit details. In case (I), a proof that treats the subcases
fL < 0 < M, fL = 0 < M, fL < 0 = M, and fL = M = 0 separately is
perhaps the simplest approach. In these subcases and in case (II), the theorem
follows by observing the limitations that must be imposed on p to assure
III - x"p(x)/f(x)11 ~ Pn . In case (III), the theorem follows from Theorem 1
part (b) where a proof of uniqueness was actually given in the last argument
of the proof.

3. THE DEGREE OF RELATIVE ApPROXIMATION

In this section we consider questions concerning the degree of relative
approximation. However, at the outset, let us recall that if fLM > 0, then

Let us assume from now on that

I x" Io < A = inf -~ ~ B = sup
O<lx!~1 f(x) O<'xl~1 I

x!, I-- < 00
f(x)

Let w be the modulus of continuity of g(x) = f(x)/x 7' on 0 < I x I ~ 1,
namely, for every 0 ;? 0, let

W(O) = sup{1 g(x) - g(y)1 : I x - y I ~ 0, 0 < I x I ~ 1, 0 < I y I ~ 1}.
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A = lim inf g(x),
x~O

L = lim sup g(x).
x~O

(5)

Observe that if I-' > 0 (as we assume henceforth),

Define g(O) to be any number in ['\, L]. It is easy to see that now, for every
D ~ 0,

w(8) = sup{1 g(x) - g(y)! : I x - y I < 8, I x I < 1, I y I < I}.

We start by mentioning the following result essentially due to Jackson,
Favard, and Ahiezer-Krein (see [3, Theorem 6]).

THEOREM 3. Let g be a real function, defined and bounded in [-1, 1],
with modulus of continuity w there. Then there exists a Pn E IIn such that

sup i g(x) - Pn(x)1 < (1 +- ;) w (n ~ 1). (6)
-l";;x,,;;l

Returning to our g, observe first that by (5) one can easily prove that

w(8) ~ L - Afor every 8 > 0, lim w(8) = L - '\. (7)
a~o+

Choose now a Pn E IIn , satisfying (6). If 0 < I x I :s:: 1, then

If~~) - Pn(x) I < (1 +- ~ ) w (n ~ 1) ,

11 - x~:\X) I < B (1 +- ;) w (n~ 1) .

Thus,

Pn < B (1 +- ;) w (n ~ 1).

(8)

Also, by (7), w(ll(n +- 1» ~ L - A and w(ll(n +- 1» ~ L - ,\ as n ~ 00.

Note that this is compatible with (3) since B ~ M implies that

B(L _ A) = B. M - I-' ~ M - I-' > M - I-' .
M'I-' I-' M+-I-'

Well-known approximating polynomials that are easy to constfl1ct are
the Bernstein polynomials. Let us consider them in the present context.
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To consider again our g, form the function g(2x - 1), whose modulus of
continuity on [0, 1] is w(2o). Let Bn(x) denote the nth order Bernstein
polynomial of g(2x - 1). Then for an appropriate constant C (for example
C = 5(4 (see [1, p. 20m,

sup I g(2x - 1) - Bn(x) 1 :s;: Cw (n~/2) .
O";;x";;l

If °< I x I :s;: 1, then Ig(x) - Bn«x + 1)/2)1 :s;: Cw(2(n1
/
2
). Thus,

Pn :s;: BCw(2(n1 / 2).

Since the sequence of nth order Bernstein polynomials of a bounded
function converges to it at every point of continuity, we have for every
x E [-1,1] ,....., {O}, Bn«x + 1)(2) --+ g(x), and so

Finally, observe that on closed subintervals Iof [-1, 1] not containing 0,
and for apn Elln

and the right-hand side can be made small to an extent depending on the
smoothness off on I, in accordance with well-known theories.
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