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1. INTRODUCTION

Let f'be a real function, defined and %0 on [—1, 1] and let N be an integer
2>0. Consider the problem of relative approximation of f by real polynomails
r(x) of degree <(W, i.e., approximating 1 by r(x)/f(x), uniformly on [—1, 1].
This is the same as the problem of approximating f by r in the norm

sup [ 1/f(0)] - | f(x) — r(x)!.

—1<w =1

If fis continuous on [—1, 1], this is just a special case of the familiar problem
of uniform approximation, with a (positive, continuous) weight function,
of a continuous function, by polynomials of degree <N, namely, the case
where the weight function is the reciprocal of the approximated function.

To get away from that familiar problem we relax our assumptions. Thus,
we shall assume throughout that f is defined, real, 50, and continuous in
[—1, 1] ~{0}; k and n are given nonnegative integers, and that x*/f(x) is
bounded in [—1, 1] ~ {0}.

Our aim is approximating 1, in the uniform norm, by a ratio x*p(x)/f (x),
p ell, , so that the measure of our approximation is

sup |1 — x®p(x)/f(2)], M

ze[—1,1]~{0}
where I1,, denotes the set of all real polynmials of degree <n.
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First observe that there is always a p* € IT,, which minimizes (1) among
all pell, . In fact, if f(x)/x* is bounded in [—1, 1] ~ {0}, then for every
pell,,

_ X)) fe
selt ) 1 f(x) xe[_sl R f(x) o P(X)‘

and the right-hand side has a minimum when p varies over I, as both the
approximated function f(x)/x* and the weight x*/f(x) are bounded. If, on
the other hand, f(x)/x* is unbounded, then we must have

x*p(x)
su 1 — =
ze[—1,1l])~{0} f®

for each p e I1,, . This in turn implies that p(x) = 0 minimizes (1) over I, .
In Section 2, we investigate the questions of uniqueness and characteri-
zation of p € I1,, minimizing (1), while in Section 3 we study the size of the
numbers in (1).
We denote by || || the supremum norm over [—1, 1] ~ {0}, and set

= @

= min
P pell,,

2. UNIQUENESS AND CHARACTERIZATION OF BEST RELATIVE APPROXIMANTS

We begin with a lemma showing the quantitative effect on p, of a “singu-
larity” (at 0) of x*/f(x). In what follows, set
k

. X
'“”*Ll?gmff() and lemlg)lsupm.

Both p and M are finite due to the assumption that x*/f(x) is bounded
throughout [—1, 1] ~ {0}.
LemMma 1.

1. p, > 1 cannot occur.
II. p,=1ifandonlyifp <0 < M.
HI. p, <lifandonly ifu > 0or M < 0.
Ifu > 00r M <0 then

‘M+ | )
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Proof. (1) The choice p(x) = 0 shows that p, > 1 is impossible. (1I)
Suppose that p << 0 << M. Let pell, be such that p(0) = 0. Then
there exists a sequence {x,} C [—1, 1] ~ {0} such that x, — 0 and
(6 (0)[f () — pp(0). Thus,

i x*p(x) ” . ) _ Xp(x,)
: & 17 fx)
=1—pup(0) > 1

Similarly, if p(0) << 0, then using M rather than u, we can conclude that

RO

Combining this with (I) gives the desired result. Conversely, suppose p, = 1.
By way of a contradiction, assume that u > 0. Then

. xk
M= 0<1|2Jf\<\1 f(x) >0,
which implies

Xk <1
B-f(x) = B

-3

0<1— < 1,

where B = SUpy«|.1<1 X*/f(x). Hence,

pn<!‘l—ﬁ%’}<].

Similarly, the assumption M < 0 leads to a contradiction. Note that (III)
follows from (I) and (II).

Finally, we turn to proving (3). Suppose that M < 0. Let p € I], satisfy
p(0) = 2/(M + p) and select a sequence {x,} C[—1, 1] ~ {0} such that
x, — 0 and x,*/f(x,) — M. Then,

|1 =75 = m 1= 2765

=[1—M-p0) =1~ M- pQ0)

2 _p—M
=1— . =
=M = T 'M+

On the other hand, let g €I, satisfy g(0) < 2/(M -+ p). Select a sequence
{x,} C[—1, 1] ~ {0} such that x, = 0 and x.*/f(x,) — u.
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Then,
~ xq(x) _ ka(xv)
1= = tm 1 =5
=1 — uq(0) = pq(0) — 1
= [
M+ M+ pu M + )

This establishes (3). A similar argument applies if u > 0.
Next, we wish to give a sufficient condition for equality in (3). In what
follows we denote, for a given pell,,

EG) =1 — P

)

LEMMA 2. Suppose that u >0 or M < 0, and that, for a given pell,,
lim sup,.q E(x) = | E] and lm ggE(x) = —|' E|. Then p is a best
relative approximant to f (i.e., p minimizes (1) over I1,) and

M —p
n=IEl= |51
P I E| Mg

Proof. Note that lim sup,., E(x) = max{l — up(0), 1 — Mp(0)} and
liminf,., E(x) = min{l — up(0), | — Mp(0)}. Thus, always 1 — up(0) =
—{1 — Mp(0)}, implying that

p0) =2/(M +p) and [ E| = (M — w)/(M + p)l.

We now characterize best relative approximations via a modified alter-
nation theorem when p, < 1, i.e,, in case (IIT) of Lemma 1. We say that
x; € [—1, 1] ~ {0} is an extreme point of the relative approximation of f by
p provided | E(x;)| = || E|l. We say that 0 is an extreme point, provided that
exactly one of the equalities

lim sup B(x) = E|l,  lim inf EC) — — || E|
holds. Denote the set of these extreme points by X, . If lim sup,_, E(x) = || E||

and lim inf,_ , E(x) = —| E|, we shall say that 0 is a determining point.
Define o(x) on X, by

o(x) = sgn E(x), if x+#0,
o = +1, if limsup E(x) = E|,
o(0)=—1, if liminf E(x)= —| E|.

Note that if 0 is a determining point, then 0 ¢ X, so that o(0) is undefined.
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THEOREM 1. (Characterization in case uM > 0). Suppose 0 < p, < 1.
Then p €11, is a best relative approximant to f if and only if either
(a) O is a determining point (in which case | E| = (M — w)/(M + )|,
or,
(b) there exist n + 2 extreme points —1 < x; << Xy < < Xpyo < |
such that o(x;,,) = —a(x),i = 1,..,n+ 1.

Proof. Assume that (a) does not occur and that p is a best relative
approximant. To show (b), suppose that —1 < x; < x, << ** < x,,, < 1,

with 1 < m < n+4 1, is a maximal set for which o(x;,,) = —a(x;), if
1 <i << m — 1 (observe that there is always at least one extreme point).
Since p, > 0, neither E(x) = | £} nor E(x) = —| E|| can occur. Indeed,
if the former occurred, then || E}| # 1 (otherwise, p(x) = 0, p, = 1), and
xp)/(1 — 11 E) f(x)) = 1, implying that p, = 0. If E(x)= —|El,
then x*p(x)/(1 + || E]) f(x) = 1, again implying p, = 0. Set t, = —1

and 1, = 1. If m > 1, select {t}75", satisfying 1, < t; < = <ty <
bt 0, x; < t; <<X4q,l;¢X,, for i=1,.,m— 1, such that o(x)
isconstanton [#;, t, ;] N X, fori =0, 1,..., m — 1. Without loss of generality,
assume that x; << 0 (if not, replace f(x) by f(—x) and p(x) by p(—x)). By
our assumption that p, > 0, we must have o(x;) 0 for i = 1,..., m. Let
us assume for convenience that o(x,) = +1; a similar argument will treat the
case o(x;) = —1 but will not be given here. Define

pAx) = p(x) + Axi(x),

where II(x) = (x — t;) " (x —tp) f m>1and IIx) =1 if m =1,
and where A == 0 is a real number satisfying sgn A = (—1)**™~1 sgn f(—1).
We shall show that there exists such a A for which p,(x) is a better relative
approximant to f than p, giving a contradiction. Consider the function

oy Xp(x) L AXFI(x)
RO =Ty~ FO = Ty

Note that our assumption pM > 0 and continuity considerations imply
that sgn y*/f(») = sgn x*/f(x) for all x, y e [—1, 1] ~ {0}. Let s be the index
for which t, << 0 < t,., and set

xe[—1, 1] ~ {0

W={xel-1Lt]ult,,, 11: 1 E(x) <[ E|/2}.
Since x*/f(x) is bounded, there exists a 6; > 0 satisfying

LEN(x), = 11— ([N p(x) + ATT()| < E | — 6,
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for all xe W, provided | A| is sufficiently small. Also, on each interval
[#;, t;1], i 5 5, we may use the fact that no alternation occurs to reduce the
error in the usual manner. Indeed, consider such an interval [¢; , ¢;,,], where
we assume for convenience that i is even (so that o(x;.;) = +1). Thus,
E(x) > —| E|| for all xelt,t;;;]. Now, let xe[t;, ;] be such that
E(x) = || E|/2. As observed earlier, sgn(x*/f(x)) is constant on [—1, 1] ~ {0};
also, sgn Il(x) = (—1)™1 since i is even, so that

sgn ()\xf‘ggx)) = 1.

Hence,

AxFII(x)

Ey(x) = E(x) — F(x)

< E(x).

Thus, by compactness, there exists 6, > 0 such that
—[Ell+6; < Exx) <[ E|| — 9

for all xe[t;, t,,,] and for all A, with [ A | sufficiently small. A similar
argument can be given for the case when i is odd.

Finally, consider the interval [z, , ¢, ,]. Since we assume that (a) does not
hold, both lim sup,_, E(x) = || E|j and lim inf,_, E(x) = —|| E|| cannot occur
simultaneously. For convenience, let us assume that lim inf,_, E(x) > —|| E||.
Now if lim sup,., E(x) < || E|| also occurs, then for | A | sufficiently small,

: x%p,(x)
— Il < timsup (1 - ZF55) < £,

so that we can select A as above giving a better approximation on [£,, #,,,].
On the other hand, suppose lim sup,_, E(x) = || £|. In this case o(x,.;) = -1
and we may take x,.; = 0. Also, AX*[1(x)/f(x) > O for xe(t;, ty,) ~ 0,
as reasoned earlier. Now, since there are no negative extreme points in
[t t5.1), there exists a 8, >0 such that E(x) > —||E|| + §, for all
x € [ty, ts1) ~{0}. Hence, there exists a &§; > 0 such that | Ey(x)| =
| E(x) — AXMI(x)[f (x)| <| E| — &5 on [t,, t,.4] ~ {0}, for | A| sufficiently
small. A similar argument can be given for the case that lim sup,_, E(x) <
| E| and lim inf,  E(x) = || El. Collecting these results, we have that
for | A | sufficiently small, || E, || < | E||, a contradiction.

Conversely, if 0 is a determining point, then by Lemma 2, p is a best
relative approximant to f. Finally, assuming (a) does not hold but (b) does,

640/15/5-7
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we shall show that p is a best relative approximant to f. Indeed, suppose there
exists a g € IT, such that

Iy xfg(x) ' ;xp(X)
! )'gll T I )

Suppose x; 5= 0 is a positive extreme point; then (4) implies that

(1= L) (1 ) B Gt — pte)

Likewise, if x; = 0 is a negative extreme point, then (4) implies that

Xgx) ) xFp(xy)

0<(1 *'m‘—)“(l - () ) f(xl)([’(‘() g(x:))-
On the other hand, suppose that 0 is a positive exireme point and
let {x,} C]{—1,1] ~ {0} be a sequence of points for which x, -~ 0 and
(1 — xfp(x,)/f(x,)) = || EY|. Then, since both of the sequences {x*/f(x,)}
and {1 — x*g(x,)/f(x,)} are bounded, we may extract a subsequence {x,}
of {x,} for which x/*/f(x,)— B and 1 — x,*q(x,)/f(x.) — «, where
p < B << Mand || E| = a. Hence,

0= E|— w— lim (M) BPU)) g0 — po)).

Similarly, if O is a negative extreme point, we have

0 << B(p(0) — q(0)),

where B is defined as above. However, our assumption M > 0, implies
that sgn 8 = sgn(x;*/f(x;)), for all x; = 0, as reasoned earlier. From this it
follows that

y(—DI(p(x)) — q(x)) =0, 0,i=1,..,n+2,

where y = +1 and {x,;}77 is a set of extreme points on which (b) holds.
Thus, by counting multiple zeros of p — g twice, we see that p — ¢ must
have at least n - 1 zeros [2, p. 61]. Hence, p(x) = q(x).

THEOREM 2. (Characterization, classification and uniqueness for general
@, M). Let B(f) be the set of best relative approximants to f from 11, .
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M Ifp <0 < M, then uniqueness fails.
B(f) = {pell, : p(x) = 0, or sgn p(x) = sgn(x*/f(x)) and
| Pl < | 2f(x)/x"* | throughout [—1, 1] ~ {0}}; and
pn = L.

(D If u >0 o0r M <0, and 0 is a determining point of some best
relative approximant to f, then unicity fails.

B() = |pelly: p(0) = Miﬂ and Yk(zjfg(i) - <P < o

throughout [—1, 1] ~ {0}$ cand p, = (M — WM + )| .

(U Ifp > 0o0r M < 0 and O is a determining point of no best relative
approximant to f, then there is a unique best relative approximant and it is
characterized by (b) of Theorem 1.

Proof. We omit details. In case (I), a proof that treats the subcases
p<0<M p=0<M, p<0=M, and p = M = 0 separately is
perhaps the simplest approach. In these subcases and in case (II), the theorem
follows by observing the limitations that must be imposed on p to assure
11 — X*p(x)/f (x)]] < p, . In case (IIT), the theorem follows from Theorem 1
part (b) where a proof of uniqueness was actually given in the last argument
of the proof.

3. THE DEGREE OF RELATIVE APPROXIMATION

In this section we consider questions concerning the degree of relative
approximation, However, at the outset, let us recall that if uM > 0, then

pn/lM+ l

Let us assume from now on that

0<dA= inf ‘xk |<B= = lxk | < e
o<lai<i | f(x) 0<m\(1 Jx)

Let w be the modulus of continuity of g(x) = f(x)/x* on 0 << | x| < ]
namely, for every 6 > 0, let

w(d) = sup{jg(x) —g(M|:1x—yi<s, 0<|x| <1, 0<|y| <1
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Set
A= lin(} inf g(x), L= lina sup g(x). %
Observe that if 4 > 0 (as we assume henceforth),
Bl<A=M1<pul=L<A4

Define g(0) to be any number in [A, L]. It is easy to see that now, for every
8 =0,

w(d) = sup{lg(x) — g :[x—y| <8 x| <Lyl <1}

We start by mentioning the following result essentially due to Jackson,
Favard, and Ahiezer—Krein (see [3, Theorem 6]).

THEOREM 3. Let g be a real function, defined and bounded in [—1, 1],
with modulus of continuity w there. Then there exists a p,, € I1,, such that

sup 186 — pull < (14 5 w (- ©

—l<<x<l

Returning to our g, observe first that by (5) one can easily prove that

w(8) == L — Aforevery 8 >0, lim w(d) = L — A, )
801

Choose now a p, €I, , satisfying (6). If 0 << | x| < 1, then

9 pan] <1 ) )

X k

=S = (P )

- pn(x)

Thus,

T 2
pe < B(1+ ) w ()
Also, by (7), wQ/(n + 1)) > L — XA and w(2/(n - 1)) - L — A as n — 0.
Note that this is compatible with (3) since B > M implies that

M—p M—p M—p

BL—X=B St == e

Well-known approximating polynomials that are easy to construct are
the Bernstein polynomials. Let us consider them in the present context.
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To consider again our g, form the function g(2x — 1), whose modulus of
continuity on [0, 1] is w(28). Let B,(x) denote the nth order Bernstein
polynomial of g(2x — 1). Then for an appropriate constant C (for example
C = 5/4 (see [, p. 20)),

sup | g(2x — 1) — B,(x)] < Cw ( 1/2)

0<x<1

If0 < | x| < 1, then | g(x) — B,((x + 1)/2)] << Cw(2/n'/?). Thus,
< BCw(2/n1/7?).

Since the sequence of nth order Bernstein polynomials of a bounded
function converges to it at every point of continuity, we have for every
x€[—1, 1] ~ {0}, B,((x + 1)/2) — g(x), and so

x*By((x -+ 1)/2)[f(x) — 1.

Finally, observe that on closed subintervals I of [—1, 1] not containing 0,
and forap,ell,

k
max |1 — % Pa(X)

na) Toy | S max ‘ f.(x)

and the right-hand side can be made small to an extent depending on the
smoothness of f on I, in accordance with well-known theories.

Jl_l

1 - max
xel

Pn(%)
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